Ll
B i] B A 4 y . %
- I =1 \Y/iWFAY
N . » 1 RS B A4 W AN
i B L i “_‘ - | "I! i
Ll

Abyss Vaults

Disclaimer

Security Review
Abyss Vaults

Disclaimer

The ensuing audit offers no assertions or assurances about the code’s security. It
cannot be deemed an adequate judgment of the contract’s correctness onits own. The
authors of this audit present it solely as an informational exercise, reporting the
thorough research involved in the secure development of the intended contracts, and
make no material claims or guarantees regarding the contract’s post-deployment
operation. The authors of this report disclaim all liability for all kinds of potential
consequences of the contract's deployment or use. Due to the possibility of human
error occurring during the code’s manual review process, we advise the client team to
commission several independent audits in addition to a public bug bounty program.

Table of Contents

Security Review
Abyss Vaults

Table of Contents

Disclaimer
Summary
Scope
Methodology
Project Dashboard
Risk Section
Findings
3S-Abyss-L01
3S-Abyss-L02
3S-Abyss-N0O1
3S-Abyss-N02

THREE SIGMA

© N W

1"

16
18
18
20
22
23

Summary

Security Review
Abyss Vaults

Summary

Three Sigma audited Abyss in a 1.2 person week engagement. The audit was conducted
from 10/11/2025 to 12/11/2025.

Protocol Description

Abyssis a liquidity venue built on Sui, providing spot and margin trading alongside
liquidity-provision vaults. Its design focuses on efficient execution and accessible
liquidity, creating a streamlined environment for both traders and LPs.

THREE SIGMA

Scope

Security Review
Abyss Vaults

Scope

Filepath nSLOC

sources/vault.move 542
sources/vault_registry.move 176
sources/fee_manager.move 40
sources/constants.move 25
sources/protocol_config.move 22
Total 805

THREE SIGMA

Methodology

Security Review
Abyss Vaults

11

Methodology

To begin, we reasoned meticulously about the contract’s business logic, checking
security-critical features to ensure that there were no gaps in the business logic and/or
inconsistencies between the aforementioned logic and the implementation. Second, we
thoroughly examined the code for known security flaws and attack vectors. Finally, we
discussed the most catastrophic situations with the team and reasoned backwards to
ensure they are not reachable in any unintentional form.

Taxonomy

In this audit, we classify findings based on Immunefi's Vulnerability Severity
Classification System (v2.3) as a guideline. The final classification considers both the
potential impact of an issue, as defined in the referenced system, and its likelihood of
being exploited. The following table summarizes the general expected classification
according to impact and likelihood; however, each issue will be evaluated on a
case-by-case basis and may not strictly follow it.

Impact / Likelihood LOW MEDIUM HIGH
NONE None
LOW Low
MEDIUM Low
HIGH High High
CRITICAL High Critical Critical

THREE SIGMA

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/
https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

Project Dashboard

Security Review
Abyss Vaults

Project Dashboard

Application Summary

Name Abyss

Repository https://github.com/abyss-protocol/abyss
Commit 39a575b

Language Move

Platform Sui

Engagement Summary

Timeline

Ne of Auditors

Review Time

THREE SIGMA

10/11/2025 t0 12/11/2025

2

1.2 person weeks

13

Vulnerability Summary

Issue Classification Found
Critical 0
High 0
Medium 0
Low 2
None 2

Category Breakdown

Suggestion
Documentation
Bug
Optimization

Good Code Practices

THREE SIGMA

Addressed

0

Acknowledged

0

14

Risk Section

Security Review
Abyss Vaults

Risk Section

No risks were identified.

THREE SIGMA

16

Findings
Security Review
Abyss Vaults

Findings

3S-Abyss-L01
Inconsistent share calculation order may lead to slight accounting
discrepancies

Id 3S-Abyss-L01

Classification

18

Impact Low

Likelihood Low

Category Bug

Status Addressed in #efacbab.
Description

In Abyss, the calculation order of mp_shares is inconsistent with the calculation order of
shares in margin_pool.

For example, in the “vault.deposit()’ function, mp_shares to be added is calculated in the
following order in the “vault.asset_to_mp_shares() function:

math::mul(
asset_amount,
math::div(total_shares, total_supply),

)

However, MarginPool uses a different order here:

math::div(
asset_amount,
math::div(total_supply, total_shares),

)

At the same time, the calculation method in “vault.withdraw()" differs even more from how
shares are reduced in MarginPool withdrawals.

THREE SIGMA

https://github.com/abyss-protocol/abyss/commit/efac5a5245dfe42ba55d43b3cfb5273c1799efb4
https://github.com/abyss-protocol/abyss/blob/2832f631bd697c2f0a45739fd645d9869617b576/sources/vault.move#L621
https://github.com/abyss-protocol/abyss/blob/2832f631bd697c2f0a45739fd645d9869617b576/sources/vault.move#L710
https://github.com/MystenLabs/deepbookv3/blob/4e4b5c270f7dd373e9db19a99d7ddf26f54d2aaa/packages/deepbook_margin/sources/margin_pool/margin_state.move#L48
https://github.com/abyss-protocol/abyss/blob/2832f631bd697c2f0a45739fd645d9869617b576/sources/vault.move#L658

19

Although they are mathematically equivalent, in actual computation, due to rounding issues,
the shares calculated using different methods may vary slightly. This can lead to minor
discrepancies between margin_pool_shares in the Abyss vault and the actual shares in the
MarginPool.

Recommendation

It is recommended to calculate the exact change in shares by taking the difference in
supplier_cap’s shares before and after performing margin_pool.supply() and
margin_pool.withdraw() operations.

THREE SIGMA

20

3S-Abyss-L02
Stale exchange rate in withdrawal causes vault share accounting drift
Id 3S-Abyss-L02

Classification

Impact Low

Likelihood High

Category Bug

Status Addressed in #23006d6.
Description

The “vault.withdraw()" function calculates margin pool shares to subtract using a
pre-withdrawal exchange rate, but DeepBook's “margin_pool.withdraw()" accrues interest
before burning shares, changing the rate. The vault then subtracts the stale pre-calculated
amount, creating accounting drift.

if you look into abyss/sources/vault.move, function withdraw it calculate shares using old
ratio (pre-accrual) but deepbook accrues interest inside withdraw(), and then we subtract
old shares which is not correct after interest accrual. Sso the vault state is updated using
stale pre-calculated amount.

/I Calculate shares using old ratio (pre-accrual)

let assets_withdraw_amount = vault.convert_to_assets(margin_pool, withdraw_amount);
let margin_pool_shares_withdraw_amount =
vault.atoken_amount_to_mp_share(withdraw_amount);

I/l DeepBook accrues interest INSIDE withdraw()

let asset = margin_pool.withdraw(margin_registry, supplier_cap,
option::some(assets_withdraw_amount), clock, ctx);

/] Subtract old shares (now incorrect after interest accrued)
vault.abyss_vault_state.margin_pool_shares =
vault.abyss_vault_state.margin_pool_shares - margin_pool_shares_withdraw_amount;

Inside DeepBook's "decrease_supply_shares()’, the ‘update()’ function accrues interest,
modifying total_supply and changing the exchange rate after vault's calculation.

One concrete impact is that vault progressively under-counts its real position in deepbook,
causing stranded value, mispriced conversions, diluted depositors, and unreliable asset
reporting that accumulates with every withdrawal.

THREE SIGMA

https://github.com/abyss-protocol/abyss/commit/e3006d69194e6e5e39bbfdab635b8ee8da16ce5d
https://github.com/abyss-protocol/abyss/blob/2832f631bd697c2f0a45739fd645d9869617b576/sources/vault.move#L672-L692
https://github.com/MystenLabs/deepbookv3/blob/b23aa87367a003c7c85cf89086222c95d6279a65/packages/deepbook_margin/sources/margin_pool.move#L331-L333
https://github.com/MystenLabs/deepbookv3/blob/b23aa87367a003c7c85cf89086222c95d6279a65/packages/deepbook_margin/sources/margin_pool/margin_state.move#L63
https://github.com/MystenLabs/deepbookv3/blob/b23aa87367a003c7c85cf89086222c95d6279a65/packages/deepbook_margin/sources/margin_pool/margin_state.move#L130

21

Additionally, users receive slightly less assets (~0.01%) than their aTokens should
represent because convert_to_assets() uses the pre-interest exchange rate.

Recommendation

The fix requires two steps to address both the user underpayment & vault accounting
issues. First, pre-calculate any pending interest and apply it to convert_to_assets before the
withdrawal, ensuring users receive a fair payout based on the current exchange rate.
Second, after the withdrawal executes, recalculate the actual shares burned by querying
the supplier position before and after the operation, then update the vault's accounting with
this accurate value to prevent drift.

THREE SIGMA

22

3S-Abyss-NO1

The mint_supplier_cap function lacks access control

Id 3S-Abyss-N01

Classification None

Category Suggestion

Status Addressed in #dd89607.
Description

“vault_registry.mint_supplier_cap()" is used to mint supplier_cap and wrap it in
AbyssSupplierCap. It is used in vault.deposit() and vault.withdraw() to operate on the funds
under the position represented by supplier_cap.

The comment above this function indicates "Public Admin Functions," but this function lacks
access control.

/I === Public Admin Functions ===
public fun mint_supplier_cap(margin_registry: &MarginRegistry, clock: &Clock, ctx: &mut
TxContext) {

The absence of access control here allows anyone to create a new AbyssSupplierCap for
deposits, which could result in vault funds not being concentrated under the intended cap.

Recommendation

It is recommended to add access control to this function, allowing only holders of
AbyssAdminCap to call it.

THREE SIGMA

https://github.com/abyss-protocol/abyss/commit/dd89607624c03ff353963fac31d90057684daee5
https://github.com/abyss-protocol/abyss/blob/2832f631bd697c2f0a45739fd645d9869617b576/sources/vault_registry.move#L115

23

3S-Abyss-N02

Incorrect parameter order in the new_currency function call

Id 3S-Abyss-N02

Classification None

Category Suggestion

Status Addressed in #855ae21.
Description

The “vault.create_vault()" function calls "coin_registry.new_currency() to create the AToken,
but the order of arguments passed is incorrect.

let (currency_builder, treasury_cap) = coin_registry.new_currency<AToken<Asset>>(
underlying_decimals,
name,
symbol,
description,
icon_url,
ctx,

The call passes arguments as underlying_decimals, name, symbol, while the
“coin_registry.new_currency()" function's actual parameter order is underlying_decimals,
symbol, name.

Recommendation

Use the correct parameter order.

let (currency_builder, treasury_cap) = coin_registry.new_currency<AToken<Asset>>(
underlying_decimals,

- name,

+ symbol,

- symbol,

+ name,
description,
icon_url,

THREE SIGMA

https://github.com/abyss-protocol/abyss/commit/855ae219119e3f4784f467a6ec28fe8bbad5e10f
https://github.com/abyss-protocol/abyss/blob/2832f631bd697c2f0a45739fd645d9869617b576/sources/vault.move#L297
https://github.com/abyss-protocol/abyss/blob/2832f631bd697c2f0a45739fd645d9869617b576/sources/vault.move#L315
https://github.com/MystenLabs/sui/blob/3eaa73c653d67ef02acdacb97c3ccc4757ad070a/crates/sui-framework/packages/sui-framework/sources/registries/coin_registry.move#L166

ctx,

THREE SIGMA

24

	Disclaimer
	
	Summary
	Protocol Description

	Scope
	

	Methodology
	Taxonomy

	Project Dashboard
	Application Summary
	Engagement Summary
	​​​
	
	
	
	
	​​Vulnerability Summary
	Category Breakdown

	Risk Section
	Findings
	3S-Abyss-L01
	Inconsistent share calculation order may lead to slight accounting discrepancies

	3S-Abyss-L02
	Stale exchange rate in withdrawal causes vault share accounting drift

	3S-Abyss-N01
	The mint_supplier_cap function lacks access control

	3S-Abyss-N02
	Incorrect parameter order in the new_currency function call

