




Disclaimer 
 

The ensuing audit offers no assertions or assurances about the code's security. It 
cannot be deemed an adequate judgment of the contract's correctness on its own. The 
authors of this audit present it solely as an informational exercise, reporting the 
thorough research involved in the secure development of the intended contracts, and 
make no material claims or guarantees regarding the contract's post-deployment 
operation. The authors of this report disclaim all liability for all kinds of potential 
consequences of the contract's deployment or use. Due to the possibility of human 
error occurring during the code’s manual review process, we advise the client team to 
commission several independent audits in addition to a public bug bounty program. 

 

 





5 
 
Table of Contents 
Disclaimer​ 3 
Summary​ 7 
Scope​ 9 
Methodology​ 11 
Project Dashboard​ 13 
Risk Section​ 16 
Findings​ 18 

3S-Abyss-L01​ 18 
3S-Abyss-L02​ 20 
3S-Abyss-N01​ 22 
3S-Abyss-N02​ 23 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

 



7 
 

Summary 
 

Three Sigma audited Abyss in a 1.2 person week engagement. The audit was conducted 
from 10/11/2025 to 12/11/2025.  

 

Protocol Description 

 

Abyss is a liquidity venue built on Sui, providing spot and margin trading alongside 
liquidity-provision vaults. Its design focuses on efficient execution and accessible 
liquidity, creating a streamlined environment for both traders and LPs. 

 

 



8 
 

 

 



9 
 

Scope 
 

 

 
 

 

 

Filepath nSLOC 

sources/vault.move 542 

sources/vault_registry.move 176 

sources/fee_manager.move 40 

sources/constants.move 25 

sources/protocol_config.move 22 

Total 805 



10 
 

 

 



11 
 

Methodology 
 

To begin, we reasoned meticulously about the contract's business logic, checking 
security-critical features to ensure that there were no gaps in the business logic and/or 
inconsistencies between the aforementioned logic and the implementation. Second, we 
thoroughly examined the code for known security flaws and attack vectors. Finally, we 
discussed the most catastrophic situations with the team and reasoned backwards to 
ensure they are not reachable in any unintentional form. 
 
Taxonomy 
 
In this audit, we classify findings based on Immunefi’s Vulnerability Severity 
Classification System (v2.3) as a guideline. The final classification considers both the 
potential impact of an issue, as defined in the referenced system, and its likelihood of 
being exploited. The following table summarizes the general expected classification 
according to impact and likelihood; however, each issue will be evaluated on a 
case-by-case basis and may not strictly follow it. 
​
 

Impact / Likelihood LOW  MEDIUM HIGH 

NONE None 

LOW Low 

MEDIUM Low Medium Medium 

HIGH Medium High High 

CRITICAL High Critical Critical 
 

 

 

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/
https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/


12 
 

 

 



13 
 

Project Dashboard 
 

Application Summary 

 

Name Abyss 

Repository https://github.com/abyss-protocol/abyss 

Commit 39a575b 

Language Move 

Platform Sui 

 
Engagement Summary 

 

Timeline 10/11/2025 to 12/11/2025 

Nº of Auditors 2 

Review Time 1.2 person weeks 

 
​
​
​
 

 

 

 

 

 

 



14 
 

​
​
Vulnerability Summary 

 

Issue Classification Found Addressed Acknowledged 

Critical 0 0 0 

High 0 0 0 

Medium 0 0 0 

Low 2 2 0 

None 2 2 0 

​
​
 

 

Category Breakdown 

 

Suggestion 2 

Documentation 0 

Bug 2 

Optimization 0 

Good Code Practices 0 

 

 

 



15 
 

 

 



16 
 

Risk Section 
 

No risks were identified. 

 

 



17 
 

 

 



18 
 

Findings 
 

3S-Abyss-L01 
Inconsistent share calculation order may lead to slight accounting 
discrepancies 

Id 3S-Abyss-L01 

Classification Low 

Impact Low 

Likelihood Low 

Category Bug 

Status Addressed in #efac5a5. 

 

Description 

In Abyss, the calculation order of mp_shares is inconsistent with the calculation order of 
shares in margin_pool. 

For example, in the `vault.deposit()` function, mp_shares to be added is calculated in the 
following order in the `vault.asset_to_mp_shares()` function: 

​
math::mul(​
    asset_amount,​
    math::div(total_shares, total_supply),​
)​
 

However, MarginPool uses a different order here: 

​
math::div(​
    asset_amount,​
    math::div(total_supply, total_shares),​
)​
 

At the same time, the calculation method in `vault.withdraw()` differs even more from how 
shares are reduced in MarginPool withdrawals. 

 

 

https://github.com/abyss-protocol/abyss/commit/efac5a5245dfe42ba55d43b3cfb5273c1799efb4
https://github.com/abyss-protocol/abyss/blob/2832f631bd697c2f0a45739fd645d9869617b576/sources/vault.move#L621
https://github.com/abyss-protocol/abyss/blob/2832f631bd697c2f0a45739fd645d9869617b576/sources/vault.move#L710
https://github.com/MystenLabs/deepbookv3/blob/4e4b5c270f7dd373e9db19a99d7ddf26f54d2aaa/packages/deepbook_margin/sources/margin_pool/margin_state.move#L48
https://github.com/abyss-protocol/abyss/blob/2832f631bd697c2f0a45739fd645d9869617b576/sources/vault.move#L658


19 
 
Although they are mathematically equivalent, in actual computation, due to rounding issues, 
the shares calculated using different methods may vary slightly. This can lead to minor 
discrepancies between margin_pool_shares in the Abyss vault and the actual shares in the 
MarginPool. 

 

Recommendation 

It is recommended to calculate the exact change in shares by taking the difference in 
supplier_cap’s shares before and after performing margin_pool.supply() and 
margin_pool.withdraw() operations. 

 

 

 

 



20 
 

3S-Abyss-L02 
Stale exchange rate in withdrawal causes vault share accounting drift 

Id 3S-Abyss-L02 

Classification Low 

Impact Low 

Likelihood High 

Category Bug 

Status Addressed in #e3006d6. 

 

Description 

The `vault.withdraw()` function calculates margin pool shares to subtract using a 
pre-withdrawal exchange rate, but DeepBook's `margin_pool.withdraw()` accrues interest 
before burning shares, changing the rate. The vault then subtracts the stale pre-calculated 
amount, creating accounting drift. 

if you look into abyss/sources/vault.move, function withdraw it calculate shares using old 
ratio (pre-accrual) but deepbook accrues interest inside withdraw(), and then we subtract 
old shares which is not correct after interest accrual. Sso the vault state is updated using 
stale pre-calculated amount. 

​
// Calculate shares using old ratio (pre-accrual)​
let assets_withdraw_amount = vault.convert_to_assets(margin_pool, withdraw_amount);​
let margin_pool_shares_withdraw_amount = 
vault.atoken_amount_to_mp_share(withdraw_amount);​
// DeepBook accrues interest INSIDE withdraw()​
let asset = margin_pool.withdraw(margin_registry, supplier_cap, 
option::some(assets_withdraw_amount), clock, ctx);​
// Subtract old shares (now incorrect after interest accrued)​
vault.abyss_vault_state.margin_pool_shares = 
vault.abyss_vault_state.margin_pool_shares - margin_pool_shares_withdraw_amount;​
 

Inside DeepBook's `decrease_supply_shares()`, the `update()` function accrues interest, 
modifying total_supply and changing the exchange rate after vault's calculation. 

One concrete impact is that vault progressively under-counts its real position in deepbook, 
causing stranded value, mispriced conversions, diluted depositors, and unreliable asset 
reporting that accumulates with every withdrawal. 

 

 

https://github.com/abyss-protocol/abyss/commit/e3006d69194e6e5e39bbfdab635b8ee8da16ce5d
https://github.com/abyss-protocol/abyss/blob/2832f631bd697c2f0a45739fd645d9869617b576/sources/vault.move#L672-L692
https://github.com/MystenLabs/deepbookv3/blob/b23aa87367a003c7c85cf89086222c95d6279a65/packages/deepbook_margin/sources/margin_pool.move#L331-L333
https://github.com/MystenLabs/deepbookv3/blob/b23aa87367a003c7c85cf89086222c95d6279a65/packages/deepbook_margin/sources/margin_pool/margin_state.move#L63
https://github.com/MystenLabs/deepbookv3/blob/b23aa87367a003c7c85cf89086222c95d6279a65/packages/deepbook_margin/sources/margin_pool/margin_state.move#L130


21 
 
Additionally, users receive slightly less assets (~0.01%) than their aTokens should 
represent because convert_to_assets() uses the pre-interest exchange rate. 

 

Recommendation 

The fix requires two steps to address both the user underpayment & vault accounting 
issues. First, pre-calculate any pending interest and apply it to convert_to_assets before the 
withdrawal, ensuring users receive a fair payout based on the current exchange rate. 
Second, after the withdrawal executes, recalculate the actual shares burned by querying 
the supplier position before and after the operation, then update the vault's accounting with 
this accurate value to prevent drift. 

 

 

 

 



22 
 

3S-Abyss-N01 
The mint_supplier_cap function lacks access control 

Id 3S-Abyss-N01 

Classification None 

Category Suggestion 

Status Addressed in #dd89607. 

 

 

Description 

`vault_registry.mint_supplier_cap()` is used to mint supplier_cap and wrap it in 
AbyssSupplierCap. It is used in vault.deposit() and vault.withdraw() to operate on the funds 
under the position represented by supplier_cap. 

The comment above this function indicates "Public Admin Functions," but this function lacks 
access control. 

​
// === Public Admin Functions ===​
public fun mint_supplier_cap(margin_registry: &MarginRegistry, clock: &Clock, ctx: &mut 
TxContext) {​
 

The absence of access control here allows anyone to create a new AbyssSupplierCap for 
deposits, which could result in vault funds not being concentrated under the intended cap. 

 

Recommendation 

It is recommended to add access control to this function, allowing only holders of 
AbyssAdminCap to call it. 

 

 

 

https://github.com/abyss-protocol/abyss/commit/dd89607624c03ff353963fac31d90057684daee5
https://github.com/abyss-protocol/abyss/blob/2832f631bd697c2f0a45739fd645d9869617b576/sources/vault_registry.move#L115


23 
 

3S-Abyss-N02 
Incorrect parameter order in the new_currency function call 

Id 3S-Abyss-N02 

Classification None 

Category Suggestion 

Status Addressed in #855ae21. 

 

Description 

The `vault.create_vault()` function calls `coin_registry.new_currency()` to create the AToken, 
but the order of arguments passed is incorrect.  

​
let (currency_builder, treasury_cap) = coin_registry.new_currency<AToken<Asset>>(​
    underlying_decimals,​
    name,​
    symbol,​
    description,​
    icon_url,​
    ctx,​
);​
 

The call passes arguments as underlying_decimals, name, symbol, while the 
`coin_registry.new_currency()` function's actual parameter order is underlying_decimals, 
symbol, name. 

 

Recommendation 

Use the correct parameter order. 

​
let (currency_builder, treasury_cap) = coin_registry.new_currency<AToken<Asset>>(​
    underlying_decimals,​
-   name,​
+   symbol,​
-   symbol,​
+   name,​
    description,​
    icon_url,​

 

 

https://github.com/abyss-protocol/abyss/commit/855ae219119e3f4784f467a6ec28fe8bbad5e10f
https://github.com/abyss-protocol/abyss/blob/2832f631bd697c2f0a45739fd645d9869617b576/sources/vault.move#L297
https://github.com/abyss-protocol/abyss/blob/2832f631bd697c2f0a45739fd645d9869617b576/sources/vault.move#L315
https://github.com/MystenLabs/sui/blob/3eaa73c653d67ef02acdacb97c3ccc4757ad070a/crates/sui-framework/packages/sui-framework/sources/registries/coin_registry.move#L166


24 
 
    ctx,​
);​
 

 

 

 


	Disclaimer 
	 
	Summary 
	Protocol Description 

	Scope 
	 

	Methodology 
	Taxonomy 

	Project Dashboard 
	Application Summary 
	Engagement Summary 
	​​​ 
	 
	 
	 
	 
	​​Vulnerability Summary 
	Category Breakdown 

	Risk Section 
	Findings 
	3S-Abyss-L01 
	Inconsistent share calculation order may lead to slight accounting discrepancies 

	3S-Abyss-L02 
	Stale exchange rate in withdrawal causes vault share accounting drift 

	3S-Abyss-N01 
	The mint_supplier_cap function lacks access control 

	3S-Abyss-N02 
	Incorrect parameter order in the new_currency function call 



